
 

 

 

 

APP4RTA 

 

For Analyzing Response Time & End-to-End Chain Latency 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: https://gsoc-doc.readthedocs.io/en/latest/contents/ui.html 

https://gsoc-doc.readthedocs.io/en/latest/contents/ui.html


1. APP4RTA Location 

 

Run ‘APP4RTA.java’ in ‘org.eclipse.app4mc.gsoc_rta.ui’ package. 

 

2. Search Amalthea 

 

Based on the horizontal line on the middle, the upper part is for response time and mapping 

analysis and the lower part is for end-to-end event chain latency analysis. The first thing to 

do is deciding a target Amalthea model. Click the ‘Search Amalthea’ button. 

 



3. Navigate to The Amalthea Folder 

 

Navigate to the folder where the target Amalthea model file is located. 

 

 

 

 

 

 

 

 



4. Select & Open Amalthea 

 

Select and open an Amalthea file. In this example, a multi-core Amalthea model is chosen. 

 

 

 

 

 

 

 

 



5. Amalthea Model Loaded 

 

After a model is loaded, it shows all the tasks (1) and processing units (2) that the selected 

model has. 

 

 

 

 

 

 

 



6. Integer Mapping 

 

When the ‘Default IA’ (1) button is clicked, each task’s box (2) is automatically filled with an 

integer number. This indicates that a task is about to be mapped to the corresponding 

identity number of processing unit. One can also write an integer number in each box 

manually. The ‘Default IA’ means an integer array to map all the tasks to processing units 

and that is specifically designed to make the ‘ChallengeModel_TCs.amxmi’ model schedulable. 

Therefore it is always possible that it does not serve for other multi-core models. However, 

the ‘Default IA’ would only contain numbers of 0 when a single-core model is loaded. 

 

 

 

 



7. Assign Tasks to Processing Units 

 

When the ‘Enter IA’ (1) button is clicked, each task is mapped to the corresponding 

processing unit (2). Since there are 7 processing units in the ‘ChallengeModel_TCs.amxmi’ 

model, it shows 7 pairs of lists. The list on the left side of each pair is for listing names of the 

tasks that are mapped to the corresponding processing unit while one on the right side is for 

listing response times of the corresponding tasks. 

 

 

 

 

 



8. Measure Response Time 

 

(1) Choose the offloading mode between ‘Synchronous’ case and ‘Asynchronous’ case. (2) 

Choose the execution case between ‘Worst-’, ‘Average-’, and ‘Best-Case’. (3) By clicking the 

‘Calculate’ button, each task’s response time is calculated and printed on the right list of each 

list pair (4). All analysis results appear in (5) which include: ‘Schedulability’, ‘Cumulated 

Memory-Access Cost’, ‘Cumulated Contention’, ‘Computation’, and ‘Response Time Sum’. 

 

 

 

 

 



9. Task Chain Analysis 

 

Now that every task’s response time is measured, it is possible to measure end-to-end task 

chain latency with the derived task response times. (1) To analyze end-to-end task chain 

latency, a task chain in the combo-box should be selected first. (2) Click the ‘Calculate’ button, 

then the selected task chain would be illustrated (3) and all measurement results would also 

be printed out (4)(5). Since the observed Amalthea model is a multi-core model here, the 

single-core analysis results are not available (5). 

 

 

 

 

 



10. Change The Model 

 

It is possible to change the observed model without clicking the ‘Reset’ buttons. Apply the 

same process but this time with the ‘ChallengeModel_SingleTCs.amxmi’ file that is a single-

core Amalthea model (1) (2) (3). 

 

 

 

 

 

 

 



11. Single-core RTA 

 

The ‘ChallengeModel_SingleTCs.amxmi’ model only has one processing unit with four tasks. 

As it is already mentioned, the ‘Default IA’ only contains numbers of 0 because a single-core 

model is loaded this time. The process is the same. 

 

 

 

 

 

 

 



12. Single-core Task Chain Analysis 

 

Now that every task’s response time is measured, it is possible to measure end-to-end task 

chain latency with the derived task response times. The process is the same. However, a 

single-core model is analyzed this time. Therefore, latency results regarding single-core are 

only available while multi-core results are not in this case. 


